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Tine biharmonic or Navier-Stokes problems in the form of a coupled pair of Dirichlet 
problems (J. Smith. S1.4df J. Numer. Anal. 5, 323 (1968)) are numerically solved by using a 
two parameter point SOR method. We emphasize the dependance of the convergence domain 
on the discrete boundary formulae. Optimization of this SOR method is heuristic but can be 
foreseen with a satisfactory precision. The optimal region is rather large and although using 
imprecisely optimal parameters, we can greatly improve the classical block SOR method 
(L. W. Ehrlich, SIAM J. Numer. Anal. 8, 278 (1971); L. W. Ehriich and M. M. Gupta, SIAM 
J. Numer. Anal. 12, 773 (1975): M. M. Gupta and R. P. Manohar, J. Comput. PhJs. 31. 265 
(1979); M. Khalil, Thesis, Universitt: Paul Sabatier. Toulouse. 1983 (unpublished)). ‘cm ion7 
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1. INTRODUCTION 

Two fundamental problems in the continuum mechanics are set up with a 
coupled system of two elliptic partial differential equations: 

(I) Biharmonic problem, 

A'I,!I=~, reduced to A$=Q on D c If%” (I] 

AQ =.fi on D c R” (3) 

with the boundary conditions 

(II) Navier-Stokes problem in DC R’, which reduces to (I) for zero 
Reynolds number, 

All/= -Q (4) 

AQ++ (5) 

and boundary conditions such as (3). 
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The boundary conditions (3) correspond to the first biharmonic problem and to the 
usual situation for the Navier-Stokes problem which generally prescribes two con- 
ditions on the stream function 1,9 and no condition on the vorticity 52: the elliptic 
equations (1) (or (4)) and (2) (or (5)) are then, respectively, over- and underdeter- 
mined. 

One encounters elliptic systems in other contexts, but a difficulty common to (I) 
and (II) is the coupling of the partial differential equations by the boundary con- 
ditions, this fact being of major importance to the SOR solvers analyzed in this 
article. 

2. SEQUENCE OF DIRICHLET PROBLEMS 

D is covered with a regular grid of step h : D,. The discrete problem (Ih) 
corresponding to (I) (Eqs. (l-3)) is defined on D, by 

(Ih) 
on D, (6) 

A#,, =fi on D, (7) 

Q,=M/zti/,fk on dD,. (8) 

A, is a finite difference approximation of the Laplacian operator A. 
Equation (8) results from an approximation of (1) on dD, using the boundary 

conditions (3) (approximation of the normal derivative); this approximation of the 
normal derivative must be at least of order (p - l), if p is the order of the 
approximation used in the elliptic operators (see details in Smith [ 111, Ehrlich [ 11, 
Ehrlich-Gupta [3]). 

With the usual livepoint approximation of A, (IA) leads to the following linear 
system (k; depending on f and g upon dD,), 

A$/, = h20,, + k, on D, (9) 

AL’,, = h2f, + kz on D, (10) 

Q/z=; tih+ks on i?Dh, (11) 

where A is block-tridiagonal and symmetric negative definite, and M is a singular 
band-matrix. For the first order approximation of the normal derivative, M is a 
diagonal matrix given by 

M= 

i 

T+I 0 
T 

. . 

T 
0 T+I 

when D is a rectangular region. 

0 
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In practice, the boundary conditions explicitly written En (11 j are used in ( IO) 
and (I,) becomes 

AQh= -F+k, on II,?. ii?) 

With second order finite difference approximations of A and .4 (Eq. (5j)-five point 
for A, centered (e.g.) for the first derivatives-we can define (If,) which has the 
same form as (I,), 

ULi 
A$,* = h’SZ, + k, (13’) i.*-, 

where B is a non-singular block tridiagonal matrix. 

An iterative procedure similar to the MSOR method of Young [ 123 has been 
introduced by Smith Ell], developed in [I, 31 for (I) and in [S, 6] for (II I and is 
identified as the SQSOR method [?I. The corresponding algorithm is given by 

A$ tn+l)= (1 -C&j A~~“‘+o,(h’Q’“+~‘+X,), 

and in matrix form 

With an eigenvector X= (X,, X,)’ partitioned like the blocks in the above iteration 
matrix ~40,,coI, we write the eigenvalue equation 

~J4w,.co~ X= AX 

and, eliminating X,, we obtain 

[(l-~?--)(l--~-~)Z+2~~c?),~A-~n/J]X~==. 

Thus, if z is an eigenvalue of A-‘M, the eigenvalues of the SQSOR method are 
determined by 
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The main results given in [ 1, 31, which are important in our context, are the 
following: 

(i) the rate of convergence, O(,/%), of the SQSOR method (this rate was 
only O(k) in the first version of this method [ll]); 

(ii) the optimization of the SQSOR method when 

i spectral radius of A -‘M. 

We complete these results by the definition of the convergence domain of the 
SQSOR method. This domain and the algorithmic properties of the method are 
discussed below. 

(A) From (17) we easily obtain the convergence domain of the SQSOR 
method in the (w,, 02) plane 

A = ((w,, wz): IA(COl, f&)1 < 1) 

A={(w,,o~):o,>O,w,>O,(o,-2)(0,-2)-o,o,Z>O} 

limited by the hyperbola with asymptotes (see Fig. 1) 

2 
mL=co2=-=a. 

l--5 

We know that, for rectangular D, t increases when h decreases El], 
therefore, when h tends to zero, A is restricted to the neighborhood 
u1 = 0, o2 = 0. Moreover, the convergence is optimal when [ 1, 121 

z= U(&‘); 
of the axes 

FIG. 1. Convergence domain 4 of the SQSOR method for the biharmonic problem (Ih), 
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2 
01=w2= 

1 + &G 

which, when ?$ 1, is very close to 

the upper bound of the convergence domain along the line pi = wZ. The choice of 
the parameters is then very sharp and if we do not know t preciseljr, the divergence 
of the SQSOR method may occur. These observations impose a very cautious 
utilization of SQSOR solvers. 

(B) The SQSOR method is a block algorithm: every “outer” iteration 
(index IZ in (14-15)) needs two resolutions of linear systems with matrix A (there 
exist very efficient direct solvers). tj’” + ijs Sz’” + I) may also be obtained iteratively (a 
point SOR method seems the most suitable): these iterations will be named “inner.” 
This procedure is not more costly because, when the SQSOR method converges, a 
few “inner” iterations are sufficient to obtain gCn + I). fi’,+ ” approximate values of 
*. . ,1z+l) gpt1j 

The SQSOR method, as detailed for the biharmonic problem (I,,), works 
similarly for the Navier-Stokes problem with particular attention to the convective 
term: centered or upstream approximation according to whether the Reynolds 
number is moderate or large. 

For (IT,) the above remark (B) is fundamental: each outer iteration modifies the 
matrix B and therefore needs a direct or iterative resolution of the linear system 
( 13’) to obtain the successive approximation Glfi + I’- Gi” + I!. 

3. GLOBAL ITERATIVE RESOLUTION OF THE ELLIPTIC SMTEM 

To avoid the difficulties mentioned above, we consider a global resolution of (I,, 1: 
(II,) with a point iterative method: PSOR. Like point SOR methods, its rate of 
convergence cannot be better than O(h) and thus compare unfavorably with the 
SQSOR method. This approach has not actually been developed [2], probably 
because the matrix formulation, much heavier than (lb), does not allow a con.. 
venient analysis of the convergence and optimization of the method. 

However, the study of the PSOR method may be partly connected with the 
preceding analysis, and although its optimization remains heuristic, we will observe 
that the PSOR method is very efficient and easy to use. We write 

A=D-L-U, 

where, as usual D = diag(.A) and L and U, respectively, the strictly lower and upper 
triangular parts of A. So, we define for (I,) the PSOR algorithm 
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When A4 is diagonal, i.e., for a first order approximation of the normal derivative 
on the boundary, the eigenvalue equation /9U,,2 - AI]= 0 reduces to [2] 

((-A+(a,+l)D)~‘(--A+(a,+l)D)-‘M+ZI=O, (20) 

where 

a non-linear eigenvalue problem which has the form 

IA,~4+A,~3+A2~2+A3~++All =o (221 

with p = & and Ai depending on ol, w2, and B, = A - D. Equation (20) must be 
compared with the eigenvalue equation used in Section 2, 

IA-“M-tll =O. i23) 
We cannot deduce A in terms of T, but it is possible to obtain a relationship between 
the spectral radii through discrete scalar products, 

(MX m = sup 
,yflJ ((-A+(a,+ljDjX,(-A+(az+l)D)X) 

x ((-A+(%+l)D)X,(-.4+(a,+l)D)X) 
(AX, AX) 

9 

hence, 

f< sup <MX x> 
xzo ((-A+ia,+l)D)X,i--A+(a,+l)D)X) 

xsup ((-A+(a,+l)D)X,(-A+(az+l)D)-~) 

Y#O (AX, AX) 
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The first factor must be compared with (20) and we reduce the second term because 
A and A + (xi + 1) D commute, for D = -41 when the grid is regular. Thus, 

where p is the spectral radius of A ~ r. 
We obtain the most restrictive condition by considering the equality case in (24). 

Replacing c( r, c(-, in terms of or, 02, we proceed by analogy with the analysis in 
191, after rather tedious calculations we obtain a sixth order symmetric polynomial 
equation in I-J’;~. Prescribing I&i < 1, we obtain the convergence domain 

A*={(o,.w,):o,>O, 0,>0, (8~-l)(o,-2j(cci,-2)-Zo,o,>Oj 

limited by the axes and the hyperbola with asymptotes (see Fig. 2) 

Now, we reconsider the remarks (A), (B) developed in Section 2 about the SQSOR 
method 

(A*) For two-dimensional problems, ,C = O(h-‘), ?= O(h-‘j [i, ?], 
therefore, when h tends to zero, d * becomes the square [0,2] x [O, 2;: the 
behavior of the PSOR method is asymptotically favourable. This is not surprising, 
for. when h -+ 0, the coupling (matrix M) of both Dirichlet problems (12) and (13) 
has a negligible effect and we know that the PSOR method converges in this case 
when wi belongs to ]0.2[. 

--L 
I 

FIG. 2. Convergence domain A* of the PSOR method for the biharmonic problem (I:,]. 
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For instance, when D = [0, l] x [0, I], fi-n-‘hp2/2, f--h-’ [l], with c a 
constant depending on the boundary formula. Thus a comparison of A, A* (Figs. 
1,2) clearly shows the favourable behavior of the convergence domain of the PSOR 
method; the possibilities of divergence are very limited. 

(B*) The PSOR method needs no auxiliary resolution, the coupling of (12) 
and (13) is satisfied for any Q’“‘, tjtnJ. A SQSOR iteration needs much more com- 
puting time than a PSOR iteration particularly for the Navier-Stokes problem 
(IL). 

(C) The eigenvalue equations (20) and (22) do not allow an easy 
optimization of the PSOR method. 

However, from the form of (I/,)-the matrix of both linear systems (12) and (13), 
is A-we naturally consider an optimal area to be in the neighborhood of 

%,,(A)= 2 
1 + ,/g’ 

(25) 

where pJ is the spectral radius of A, = -D -‘A -I- I, the Jacobi matrix associated 
with A. We will choose wi or o2 near co,,,,. 

(D) For the NavierStokes problem (II,), B is non-symmetric and does 
not commute with A: we cannot obtain an analytical definition of d*. The con- 
vergence domain is non-symmetric and we will find an optimal region if we 
prescribe: o1 = coopt(A j. However, with positive schemes (centered for moderate R, 
upstream for large Rj, the behavior of the PSOR method for both problems (Ih), 
(II,) will not be very different. 

4. NUMERICAL RESULTS 

Numerical experiments have been conducted for the cavity driven problem in 
D=L-0, llx[O, 11, 

*=o, g=O on aD except g= -1 when y=l. 

We have considered four usual boundary formulae [3, 6, lo] which we write below 
on a rigid wall parallel to Oy: 
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(i) First order formula, Thorn [lo] or (1. 0) [3], 

(il) Second order formula (2, 0) [3], 

nO,j= -A CtrCl2,j+IClO,j+I +~o.j~I-~~oj-hi~.),.,l. 

(iii) Second order formula: Jensen [lo] or (2.1) [3], 

R,j= -A [-t~*,j+4~I,j+~~,j+I+li/o.~-I-~~o.j-3h!IC1.),.,1' 

(iv) Woods second order formula [lo], 

For the biharmonic problem, the signs are opposite in the above formulae. The 
Reynolds numbers considered in the experiments are: 

R=O (I) and R = 1 to 5000 (II ). 

4. I. Conaergence Domains 

We see in Fig. 3 the convergence domains A (SQSOR) and A * (PSOR) for ?he 
problem (I,z) with /I= 0.05. The values of Z= P(A -‘AI) are taken in [3] 

Formula (1.0) (LOI Woods 

r 10.5 4.85 16 75 .-- 10.8 

w2 

2 

3" 
2. 

h 

1. ., 

\ 1,. "\\, 

\;\ 
',I 

'\ ' 
\ \ 

u 

3 i 
2 

1 

a1 
2 

FIG. 3. C~~rves p. p*, boundaries of the convergence domains d. AI* for different boundary formulse: 
p = 1, (39): p = 2, (27); p = 3, (25). 
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FIG. 4. Boundaries of il* for different Reynolds numbers R: C, (centered scheme), D, (upstream 
scheme). 

For the Navier-Stokes problem (II,), we get an approximate value of 
P(A ~ ‘B-‘M)-at the beginning of the SOR procedure-which is not very different 
from Z, except when R is large. In Fig. 4 we plot the convergence domains A* 
(PSOR) given by the numerical experiments for some values of R (h = 0.1). 

Remark. When R increases, the convergence domain decreases towards w2 
(corresponding to B). The same behavior is observed when the PSOR method is 
applied to the only matrix B, for the eigenvalues of L&(B) become complex 
[3,9, 121. Note moreover that the convergence domain is more extended when 
using an upstream scheme. 

4.2. Optimization qf the SOR Algorithms 

Table I (centered scheme: R 6 100) and Table II (upstream scheme: R 3 500) give 
the number of outer SQSOR iterations required to solve the cavity problem (26) 
with one of the boundary formulae (27)-(30). Iterations were stopped when 

(/fP+ l)-a”i’ll, < 10-4, 

the mesh used was h = 0.05 and w, = o2 = 2[ 1 + ViG] -I. 

TABLE I 

Outer SQSOR Iteration Number 

Reynolds number 

Boundary formulae 0,=C02 0 1 10 50 100 R 

(27) (1.0) 0.46 22 22 23 32 43 NE 
(28) (2.0) 0.58 14 14 15 20 26 NE 
(29) (2, 1) 0.39 27 27 29 40 56 NE 
(30) Woods 0.45 20 20 21 34 47 NE 

Note. Iteration Number IV, when using centered scheme. 
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TABLE II 

Outer SQSOR Iteration Number 

Reynolds number 

Boundary formulae 0,=C02 500 1000 2000 5000 I? 

(27) (1,O) 0.44 71 84 118 143 1%-z 
(28) (TOi 0.55 43 61 82 104 N, 
(29) (2, 1 J 0.37 88 109 141 185 ,va 
130) Woods 0.44 76 90 106 132 cr’, 

.VO!P. Iteration Ntimber NE when using upstream scheme. 

For the same range of values of R, Tables III and IV give the iteration numbers 
of the PSOR method: we have choosen (see above Sect. 3) 

co1 = w,,,(A) = 1 + I, 7c,~ = 1.729 

and numerically optimized the choice of oz. 
These tables show that N is 2 to 4 times N, depending on R and the boundary 

formulaes. One SQSOR iteration needs the solution of two large linear systems 
with matrices A (I,z), A and B (.II,), and in particular, for (II,z), each iteratkn 
modifies the discrete vorticity equation (matrix B). 

Therefore the computing time is significantly reduced for the Navier-Stokes 
problem (II,) when using the PSOR algorithm. This advantage depends on the 
procedure used in the inner resolution for the SQSOR method: if we use inner point 
SOR iterations, N, must be multiplied by at least II) (the number of iterations 
needed to obtain $(’ + “, 8’” + I’) and then compared with N. 

Note that the usual difficulties encountered when R is large (slower convergence 
and restriction of the convergence domain) are not avoided by these algorithms. 

TABLE III 

PSOR Iteration Number 

Reynolds number 

Boundary formulae 0 1 10 50 100 R 

(271 
(281 
(29) 
(30) 

(l,O) 
(2, Oj 
(2-1) 

Woods 

76(1.1) 75(1.1 ) 73(1.1 j 75(l) 84(0.9 j f?(W) 
65( 1.2) 66( 1.2) 68(1.15) 80(l) 87(0.9) LI:(0;2 j 

lOO(O.95) 98(0.95) lOl(O.95 i 99(0.9) 9910.8) .V(LCr J 
96(l) 96(l) 95(l) 87fO.95) 87(0.8) N( c:, 1) 

Xore. Iteration Number N with wi = 1.73, o, specified between brackets (centered scheme) 
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TABLE IV 

PSOR Iteration Number 

Reynolds number 

Boundary formulae 500 1000 2000 5000 R 

(27) 
(28) 
(29) 
(30) 

(LOI 
(2, Oi 
(2.1) 

Woods 

123(0.9) 133(0.6) 134(0.5) 208(0.5) N( 012 ) 
137(0.9) 220(0.7) 245iO.7) 261(0.7) -WOJ*) 
185(0.7j 204(0.65) 218(0.6) 227(0.6) N(uJ?) 

186(0.7) 213(0.65) 227(0.6 J 222(0.6) N(o,) 

Nore. Iteration Number N with wr = 1.73, oL specified between brackets (upstream scheme j. 

These difficulties are more significant for the SQSOR algorithm (Figs 3, 4 [S]). We 
show in Fig. 5 the reliability of the PSOR method. For an example, (26) with boun- 
dary formula (27) and h = 0.1, we plot the “Cqui-iteration” curves for o,, o2 close 
to the optimal values (wr = o,,,(A) = 1.528). We observe a wide optimal area, and 
variations of o,, w2 slightly modify the iteration number, especially when w2, only 
numerically optimized, varies, the variation of N is less than 10 % when o2 varies 
from 0.78 to 1.02 in our example. 

i- 

45 
/ 

1.4 

50 

1.3 > 
0.7 0.8 0.9 1 "2 

FIG. 5. “Equi-iterations” curves near the optimal values of or, w2 for the data R = 1, h = 0.1 and the 
boundary formula (27). 
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5. CONCLUSIONS 

The above studies, convergence domain, optimization and reliability of the 
algorithm, clearly show the efficiency of the classical point SQR method adjusted to 
the elliptic systems (I), (II). Numerical experiments for different values of h allowed 
us to observe that the rate of convergence of the PSOR method is O(h) even if the 
choice of wl, io2 is not quite optimal. It must be remembered that the asymptotical 
behavior (0(/z”‘)) of the SQSOR method concerns only the outer iterations, the 
efficiency of the method also depends on obtaining the successive approximations 
(direct method or inner iterations). Moreover, this best behavior is rather limited 
since the convergence domain of the SQSQR method becomes smaller when h + 0, 
contrary to the convergence domain of the PSOR method. This fact notably 
reduces the importance of the difference between the convergence rates of both 
methods. For the Navier-Stokes problem (II,), the advantage of the PSOR method 
may be stressed by the use of variable parameters wi.i [4, 71 depending on Fhe 

values of the coefficients of the first derivatives in the vorticity equation. 
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